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1 Introduction

Over the past ten years there has been much activity in the AdS/CFT correspondence.

This powerful conjecture [1] relates two different theories in different regimes. It is very

difficult to prove the correspondence fully, since this would involve a complete solution of

the theories on both sides. Nevertheless, we would like to see how the fundamental degrees

of freedom on one side of the conjecture appear on the other side.

One particular limit which could be interesting to analyze is the limit in which the

super Yang-Mills theory is free. Although we have a trivial theory on one side of the

conjecture, the dynamics of the string theory side is governed by a highly interacting

worldsheet. This limit is beyond the reach of perturbation theory using the Metsaev-

Tseytlin AdS5 × S5 Green-Schwarz sigma model [2] (or its pure spinor [3] version [4, 5]).

Although both versions appear to be integrable two-dimensional field theories [6–8], no

one has been able to use integrability to perform a non-trivial calculation which could shed

light on the strongly-coupled regime. A possible approach to this problem was recently

proposed by Berkovits and Vafa [9]. Using a modified version of the pure spinor action

in AdS5 × S5, they were able to define a gauged linear sigma model which is related to
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the usual superspace variables by a twistor-like field redefinition. The model so obtained

has N = (2, 2) worldsheet supersymmetry, global U(2, 2|4), and local U(4) symmetry. The

fact that the global symmetry group is a supergroup has important implications for the

quantum theory. After integrating out the gauge degrees of freedom, one recovers the

non-linear sigma model action previously obtained in [10].

Although the original motivation in [9] was to construct an action in which the zero-

radius limit is reachable, the non-linear sigma model action is supposed to be equivalent to

the pure spinor version for all radii. Furthermore, since it has N = (2, 2) worldsheet super-

symmetry and space-time supersymmetry it is possible that many quantum calculations

are greatly simplified. In this work we show that this is indeed the case.

A subtle point is the definition of the physical spectrum. Although Berkovits and

Vafa refer to their model as an “A-model”, the physical spectrum, which is supposed to

be equivalent to the pure spinor version, is not the usual cohomology of an A-model since,

the BRST charge of the pure spinor description is not mapped to the BRST charge of the

A-model. Only the low-lying excitations, which were used in [9], should agree using the

two different BRST charges.1

In this paper we study the classical and quantum integrability of this gauged linear

sigma model. The worldsheet supersymmetry plays an important role in constraining the

form of possible quantum corrections in the effective action and correlators, and space-time

supersymmetry helps to prove that many of these corrections vanish. The end result is that

the first non-local charge is a well-defined operator in the quantum theory and does not

need renormalization. This provides further evidence that the gauged linear sigma model

picture is a consistent description of the pure spinor superstring in AdS5 × S5.

Integrability techniques are well developed on the YM side of the conjecture where the

full S-matrix [12, 13] and Bethe equations, which determine the anomalous dimensions of

gauge theory operators in the long operator limit, was already derived [14–16]. Also, a

complete anomalous dimension function of some particular gauge theory operator which,

was shown to agree with both perturbative YM [17] and string theory [18] sides, was con-

structed in [16]. We hope that the high number of space-time and worldsheet symmetries

of this gauged linear sigma model will facilitate the implementation of such a program on

the string theory side. It would be very interesting to see how the methods of [19–25] can

be applied to the present case.

This paper is organized as follows. In section 2, we introduce the gauged linear sigma

model proposed by Berkovits and Vafa. In section 3, we discuss its classical symmetries and

find the corresponding non-local conserved charges. Section 4 is devoted to the discussion

of classical integrability. In section 5, we address the question of quantum integrability of

the sigma model. We conclude and discuss open problems in section 6. In the appendix

we put definitions and derivations which were skipped in the main text.

1The topological sector of the sigma model was recently used in [11] to compute amplitudes in the open

string sector of 1

2
-BPS operators.
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2 Definition of the GSLM

The gauged linear sigma model defined by Berkovits and Vafa [9] is related to the pure

spinor AdS5 × S5 sigma model after a BRST-trivial term is added to the action. This

BRST-trivial term enhances the target space symmetries and makes it possible to describe

the model in terms of an N = (2, 2) supersymmetric worldsheet action principle.

The resulting model resembles the old Grassmannian sigma models on U(n+m)
U(n)×U(m) (see,

e.g. [26]), but we replace the numerator with the supergroup U(2, 2|4) (and also replace one

of the U(4)s with U(2, 2)).2 The second fundamental difference is that, by construction,

the worldsheet fields are fermionic and will have a kinetic term with two derivatives. The

choice of denominator makes the model a symmetric space, in contrast with the AdS5×S5

sigma model which also has a Wess-Zumino term.

We begin by establishing some N = (2, 2) superspace notation. Bosonic worldsheet

coordinates will be denoted by (σ , σ ) and the fermionic coordinates will be denoted by

(κ+, κ−, κ̄+, κ̄−). The covariant superderivatives are taken to be

D+ =
∂

∂κ+
− iκ̄+ ∂

∂σ
, D̄+ =

∂

∂κ̄+
− iκ+ ∂

∂σ
,

D− =
∂

∂κ−
− iκ̄− ∂

∂σ
, D̄− =

∂

∂κ̄−
− iκ− ∂

∂σ
. (2.1)

They commute with the supercharges

Q+ =
∂

∂κ+
+ iκ̄+ ∂

∂σ
, Q̄+ =

∂

∂κ̄+
+ iκ+ ∂

∂σ
,

Q− =
∂

∂κ−
+ iκ̄− ∂

∂σ
, Q̄− =

∂

∂κ̄−
+ iκ− ∂

∂σ
, (2.2)

and satisfy the anticommutation relations

{D+, D̄+} = −2i∂ , {D−, D̄−} = −2i∂ , (2.3)

where ∂ = ∂/∂σ and ∂ = ∂/∂σ . Any other graded commutator vanishes. Integration

over the full superspace is defined as
∫

d4κ = D+D−D̄+D̄−

∣

∣

κ+=κ−=κ̄+=κ̄−=0
. (2.4)

Analogously to the bosonic Grassmannian [26] sigma models, we introduce the ba-

sic fields ΦΣ
R(σ, κ). Here Σ is a global U(2, 2|4) index which splits into A = 1, . . . , 4 and

J = 1, . . . , 4, where A is a bosonic global U(2, 2) index, and J is a fermionic global U(4)

index. R is a fermionic local U(4) index which will be gauged by introducing a gauge pre-

potential V R
S (σ, κ). Note that since U(2, 2|4) is a supergroup, and ΦΣ

R is in its fundamental

representation, ΦA
R is a fermionic superfield and ΦJ

R is a bosonic superfield.

The superfields come in chiral/anti-chiral pairs

D̄+ΦΣ
R = D̄−ΦΣ

R = 0, D+Φ̄R
Σ = D−Φ̄R

Σ = 0, (2.5)

2For a review of supergroups, see appendix A.
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which have the following expansion in terms of component fields:3

ΦΣ
R = φΣ

R + κ+XΣ
R + κ−Ȳ Σ

R + κ+κ−FΣ
R + · · · ,

Φ̄R
Σ = φ̄R

Σ + κ̄+Y R
Σ + κ̄−X̄R

Σ + κ̄+κ̄−FR
Σ + · · · , (2.6)

where XΣ
R will (after fixing an appropriate gauge) be a twistor-like combination of the

AdS5 × S5 coordinates and pure spinor ghosts, Y R
Σ are the conjugate momenta for the

twistor variables, and FΣ
R are auxiliary fields. The higher components are not independent

fields and are required only for chirality.

The prepotential for the U(4) symmetry has the following expansion in Wess-Zumino

gauge:

V R
S = σR

S κ+κ̄+ + σ̄S
Rκ−κ̄+ + (A )RS κ+κ̄+ + (A )RS κ−κ̄− + · · · , (2.7)

where the ellipsis contains the gauginos and higher components. Note that in this gauge

eV = 1 + V +
1

2
V 2, (2.8)

where all terms above are matrices.4 The prepotential has twisted-chiral field strengths

given by

Σ
.
= {D̄+,D−} = D̄+(e−V D−eV ) , Σ̃

.
= {D̄−,D+} = D̄−(e−V D+eV ), (2.9)

where, in the gauge-chiral representation, the covariant derivatives are given by

D± = e−V D±eV , D̄± = D̄±. (2.10)

The above field strengths are related to the usual chiral field strength defined in four-

dimensional, N = 1 theories by

W− = D̄−Σ, W+ = D̄+Σ̃. (2.11)

Another utility of the twisted-chiral field strengths is the addition of a twisted-chiral su-

perpotential to the model. For the present case, only a linear superpotential will be added

W(Σ) =
t

2
Σ, W̃(Σ̃) =

t̄

2
Σ̃, (2.12)

where t = t + i θ
2π

, t will represent the squared radius of the sigma model, and θ couples to

the first Chern class of the gauge field. Unlike bosonic Grassmannian sigma models, there

are no dynamical corrections to this superpotential [30].

The action for this model is given by5

S =

∫

d2σd4κ

[

Φ̄ΣeV ΦΣ +
1

g2
Tr(ΣΣ̃)

]

+

∫

d2σdκ+dκ̄− t

2
Tr(Σ) +

∫

d2σdκ̄+dκ− t̄

2
Tr(Σ̃),

(2.13)

3This differs from the expansion in [9] which has the wrong component fields in the antichiral field.
4To avoid cumbersome notation, we sometimes omit global Σ, local R, or both indices.
5This type of gauged linear sigma model for Grassmannian manifolds was discussed in [31].
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where g is the coupling constant for the gauge field with dimensions of (length)−1. Here,

and in the rest of the paper, Tr(·) denotes the trace over U(4) indices. The equations of

motion for ΦΣ
S and Φ̄S

Σ with arbitrary g and t are

D+D−[(eV )RS ΦΣ
R] = 0, D̄+D̄−[Φ̄R

Σ(eV )SR] = 0. (2.14)

In the deep infra-red limit, g → ∞, the equation of motion for V that follows from

this action is

tδR
S = Φ̄T

Σ(eV )RT ΦΣ
S , (2.15)

whence we find that t has an interpretation as the “size” of the super-Grassmannian man-

ifold. Another way to see this is to write the action as

S =

∫

d2σd4κ

[

Φ̄R
ΣΦΣ

R +
1

2
Φ̄R

Σ(V 2)SRΦΣ
S + V R

S (Φ̄S
ΣΦΣ

R − tδS
R) + · · ·

]

, (2.16)

where the ellipsis denotes terms which vanish in Wess-Zumino gauge, and we set θ = 0

and g → ∞. We can clearly see how the familiar constraint Φ̄S
ΣΦΣ

R = R2δS
R appears with

t = R2: Besides being responsible for the gauge invariance, V also plays the role of the

Lagrange multiplier in the g → ∞ limit. It constrains the dynamical system defined by the

action (2.13) to the Grassmannian and is of a different nature than the differential equation

of motion (2.14). We will therefore distinguish the consequences of these two conditions

by referring to equations holding due to (2.15) as off-shell and those holding due to (2.14)

as on-shell.

The solution of equation (2.15) is

V R
S = δR

S log t − log(Φ̄R
ΣΦΣ

S ). (2.17)

Substituting this equation back into the action, we get a non-linear action in terms of

(Φ, Φ̄). Subsequently, using the U(4) gauge invariance to fix6 ΦJ
R =

√
tδJ

R, we obtain

S = t

∫

d2zd4κTr

[

log

(

δJ
K +

1

t
Φ̄J

AΦA
K

)]

(2.18)

which is the usual N = (2, 2) non-linear sigma model action for Grassmannian manifolds.

We close this section with some comments on the interpretation of this gauged linear

sigma model. The worldsheet supersymmetry is A-twisted, which means that the compo-

nents (XΣ
R , X̄R

Σ ) of the (anti)chiral fields defined in equation (2.6) have conformal weight

zero and the components (Ȳ Σ
R , Y R

Σ ) have conformal weight one.7 However, the worldsheet

operators generating the superconformal transformations are not the operators whose co-

homology defines the physical spectrum. This fact is due to the nontrivial mapping [9]

between the pure spinor variables and the variables in equation (2.6). This mapping,

6Although useful, this gauge fixing is not very convenient when one wants to study the relation between

the GLSM and the pure spinor version [9, 30].
7One should be careful when talking about conformal symmetry in the present case since, as usual in

gauged linear sigma models, the action is only supposed to be conformaly invariant in the infrared limit.
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which involves two tensors (ǫAB, ǫJK) (in addition to those defined in appendix A) which

explicitly break the U(2, 2|4) symmetry, breaks worldsheet supersymmetry. In conclusion,

although the action (2.18) is topological in the sense that it can be written in a BRST-exact

form, the spectrum and correlation functions are not those of a topological theory.

3 Classical symmetries

In this section we analyze the symmetries of the action (2.13). Our goal is to verify

that this two-dimensional field theory is integrable at both the classical and quantum level.

Although the interpretation of the model is subtle, since it involves a field redefinition of the

standard worldsheet variables, we have a well-defined field theory in two dimensions, and

it is worthwhile to study its properties. Little is known about sigma models on supergroup

manifolds. It was shown in [26] that the pure bosonic Grassmannian sigma model is not

integrable at the quantum level but its N = 1 supersymmetric extension is. We would like

to know the analogous statement for the present model.

When t 6= 0 and g → ∞ we can integrate V out and get a non-linear sigma

model (2.18) [10]. When t = 0 this procedure cannot be carried out. It would be interest-

ing to analyze both cases, but since the latter does not appear to have a clear geometric

interpretation, we will restrict our attention to the case t 6= 0 in this work.

Let us first analyze the local and global symmetries of equation (2.13). The U(4) gauge

transformations are given by

δΦΣ
R = δLS

RΦΥ
S , δΦ̄R

Σ = (δL†)RS Φ̄S
Υ = −δLR

S Φ̄S
Υ,

δ(eV )RS = δLR
T (eV )TS − (eV )RT δLT

S ,

δΣR
S = δLR

T ΣT
S − ΣS

T δLT
S , (3.1)

where δLR
S is the parameter for the U(4) gauge transformation. We can see more clearly

the invariance of the action using matrix notation:

δΦΣ = δLΦΣ, δΦ̄Σ = −Φ̄ΣδL,

δeV = [δL, eV ],

δΣ = [δL,Σ]. (3.2)

The action (2.13) also has global U(2, 2|4) invariance

δglobalΦR = δMΦR, δglobalΦ̄
R = −Φ̄RδM,

δglobale
V = 0, δglobalΣ = 0, (3.3)

where δM is the parameter for the global U(2, 2|4) transformation. To compute the con-

served current associated with this global symmetry, we promote the parameter of the

transformation for Φ to a chiral superfield δM and the one for Φ̄ to an antichiral superfield

δM̄ . The variation of the action is

δS =

∫

d2zd4κ[−Φ̄SδM̄ (eV )RS ΦR + Φ̄S(eV )RS δMΦR], (3.4)

– 6 –
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this variation is zero when δM = δM̄ , that is, when M is a constant superfield. Varying

with respect to to δM̄ we get

δS

δM̄Υ
Σ

= −(−1)|Υ||Σ|D+D−(Φ̄S
Υ(eV )RS ΦΣ

R), (3.5)

so D+D−(Φ̄S
Υ(eV )RS ΦΣ

R) = 0 is the conservation law associated with the global invariance.

As usual, the conservation law is only valid on-shell (eq. 2.14). We will define the corre-

sponding gauge invariant conserved current as

JΣ
Υ

.
= (−1)|Σ||Υ|Φ̄S

Υ(eV )RS ΦΣ
R, (3.6)

where J is a hermitian matrix-valued (indeed, u(2, 2|4)-valued) superfield which is linear:

D+D−JΥ
Λ = 0 (on-shell). (3.7)

Due to the V equation of motion (2.15), the super-trace of this u(2, 2|4) current gives the

diameter (squared)

(−1)|Σ|JΣ
Σ = 4t (3.8)

of the Grassmannian manifold. Finally, the conserved charge is

QΣ
Υ =

∫

dσ

[
∫

dκ+dκ̄+JΣ
Υ +

∫

dκ−dκ̄−JΣ
Υ

]

. (3.9)

The vector components, given by

(J )ΣΥ
.
= [D+, D̄+]JΣ

Υ, (J )ΣΥ
.
= [D−, D̄−]JΣ

Υ. (3.10)

can be used to write this charge simply as QΣ
Υ =

∫

dσJΣ
τ Υ. In this formula, and all

such formulæ for charges appearing henceforth, we take only the lowest component of each

superfield on the right-hand-side of the equation.

Since the worldsheet spinors prefer lightcone coordinates, it is convenient for the exe-

cution of superspace manipulations to work in this basis. The lightcone time will be taken

to be σ = 1
2 (τ − σ). Then, the lightcone charge is given by Qlc =

∫

dσ J and conser-

vation ∂ Qlc = 0 follows from the identity i∂ [D−, D̄−] + i∂ [D+, D̄+] = [D+D−, D̄+D̄−]

and linearity (3.7) of J .

4 Classical integrability

Besides the global symmetry described above, the action (2.13) admits non-local symme-

tries. This ought to be true, at least classically, since the gauged linear sigma model is

related by a field redefinition to the pure spinor string in AdS5 × S5, and the latter has

non-local charges [7]. Validity of this description of the pure spinor string in quantum

theory requires that these symmetries are not anomalous [8]. The existence of an infinite

number of conserved charges is regarded as an indication that the model is integrable. In

this section, we will show how the first non-local charge is constructed from the u(2, 2|4)
current J . We then construct the superspace Lax operators generating the complete set of

non-local charges and explain the connection to the more familiar component analysis [26].

– 7 –
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4.1 Classical non-local charge

An interesting property of the current (3.6) is the identity (valid off-shell when g → ∞)

JΣ
ΥJΥ

Θ = −tJΣ
Θ, (4.1)

which holds due to equation (2.15) and the definition (3.6). For ease of reference, we will

call this equation the “first fundamental J-identity”. Although this equation looks like

an ordinary algebraic equation, we have to remember that the superfields Φ and Φ̄ are

constrained (viz. chiral).

We now derive the two remaining identities. Multiplying equation (2.15) on left by ΦΥ
R

we obtain an off-shell identity which, together with its conjugate, can be written as

JΥ
ΣΦΣ

S = −tΦΥ
S and Φ̄S

ΣJΣ
Υ = −tΦ̄S

Υ. (4.2)

Applying D̄± on the first equation and using chirality, one obtains (D̄±J)Φ = 0. Taking

the complex conjugate of this equation gives Φ̄(D±J) = 0. These two equations imply the

second and third fundamental identities8

(D̄±JΥ
Σ)JΣ

Λ = 0 and (−1)|Σ|JΥ
Σ(D±JΣ

Λ) = 0. (4.3)

These two equations together with (4.1) will form the basic set of fundamental off-shell

equations. They represent the superspace analogue of the flatness condition in two-

dimensional classical integrable models. Combined with the on-shell relation (3.7), they

are, in fact, equivalent to the V equation of motion, and chirality and equations of motion

of Φ, thus providing the necessary ingredients to construct the flat component current and

Lax operators.

To write the component equation for the curl of the conserved current, it is useful to

define a second component current constructed from fermion bi-linears:

jΥ
Λ = −2

t
(−1)|Υ|+|Σ|

(

D+JΥ
ΣD̄+JΣ

Λ + D̄+JΥ
ΣD+JΣ

Λ

)

,

jΥ
Λ = −2

t
(−1)|Υ|+|Σ|

(

D−JΥ
ΣD̄−JΣ

Λ + D̄−JΥ
ΣD−JΣ

Λ

)

. (4.4)

In appendix C we show that these currents, together with J , satisfy the “flatness equa-

tion” [26]

it∂
(

JΥ
Λ + jΥ

Λ

)

− it∂
(

JΥ
Λ + jΥ

Λ

)

+
[

JΥ
ΣJΣ

Λ − JΥ
ΣJΣ

Λ

]

= 0 . (4.5)

With this, we are able to write down the non-local charge. In lightcone coordinates,

Qlc =

∫∫

dσ1 dσ2θ(σ1 − σ2 )[J (σ1), J (σ2)] + 2it

∫

dσ (J + j ). (4.6)

Using (4.5) and the conservation of the vector components of the currents, it is straight-

forward to verify that

∂ Qlc = 0, (4.7)

that is, the non-local charge is conserved.

8Although we give them different names for easy of reference, the third identity is the hermitian conjugate

of the second.
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4.2 The superspace Lax “quartet”

In this section we construct a superspace Lax representation of the flatness equation. The

starting point is to construct the following “pure gauge connections”

DΥ
+Λ = (−1)|Σ|(e−

λ

t
J)ΥΣD+ (e

λ

t
J)ΣΛ, D̄Υ

+Λ = (−1)|Σ|(e
λ

t
J)ΥΣD̄+ (e−

λ

t
J)ΣΛ,

DΥ
−Λ = (−1)|Σ|(e

λ

t
J)ΥΣD− (e−

λ

t
J)ΣΛ, D̄Υ

−Λ = (−1)|Σ|(e−
λ

t
J)ΥΣD̄− (e+ λ

t
J)ΣΛ. (4.8)

From these definitions it is clear that {D+, D̄−} = {D−, D̄+} = 0. To check which other

supercurvatures are zero we expand the derivations (4.8). Due to the first fundamental

equation (4.1), it is easy to compute that

(e
λ

t
J)ΣΛ = δΣ

Λ +
1

t
(1 − e−λ)JΣ

Λ (4.9)

and, therefore, the derivations are at most quadratic in J . We now show that they are, in

fact, linear. Explicitly we have

DΣ
+Θ = (−1)|Σ|δΣ

ΘD+ +
1

t
(−1)|Λ|(1 − e−λ)(δΣ

Λ +
1

t
(1 − eλ)JΣ

Λ)D+JΛ
Θ. (4.10)

We can simplify this by using the third fundamental relation (4.3) to obtain

DΣ
+Θ = (−1)|Σ|

(

δΣ
ΘD+ +

1

t
(1 − e−λ)D+JΣ

Θ

)

. (4.11)

The construction of D̄+ involves an additional step: At first we have

D̄Σ
+Θ = (−1)|Σ|δΣ

ΘD̄+ +
1

t
(−1)|Λ|(1 − eλ)(δΣ

Λ +
1

t
(1 − e−λ)JΣ

Λ)D̄+JΛ
Θ (4.12)

= (−1)|Σ|δΣ
ΘD̄+ +

1

t
(−1)|Σ|(1 − eλ)D̄+JΣ

Θ

+
1

t2
(2 − eλ − e−λ)

(

(−1)|Λ|JΣ
ΛD̄+JΛ

Θ

)

.

Now we simplify this using the second fundamental relation (4.3) and the equation

(−1)|Λ|JΣ
Λ D̄±JΛ

Θ = −t(−1)|Σ|D̄±JΣ
Θ, which follows from the first fundamental rela-

tion and is derived (c.f. equation C.4) in appendix C. This gives

D̄Σ
+Θ = (−1)|Σ|

(

δΣ
ΘD̄+ +

1

t
(e−λ − 1)D̄+JΣ

Θ

)

. (4.13)

Along exactly the same lines, the remaining two derivations are giving by

DΣ
−Θ = (−1)|Σ|

(

δΣ
ΘD− +

1

t
(1 − eλ)D−JΣ

Θ

)

,

D̄Σ
−Θ = (−1)|Σ|

(

δΣ
ΘD− +

1

t
(eλ − 1)D̄−JΣ

Θ

)

. (4.14)

It is now easy to show that the supercurvature {D+,D−} vanishes if and only if all on-

and off-shell J-identities hold. The same is true for {D̄+, D̄−}. With these four derivations

we define the compatible system of equations

D±U(σ , σ ;λ) = 0 or D̄±V (σ , σ ;λ) = 0 (4.15)
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whose solutions generate infinitely many conservation laws. In order to make contact with

the usual Lax pair construction in bosonic integrable models we have to compute the two

remaining supercurvatures. We will define them as

D =
i

2
{D+, D̄+} and D =

i

2
{D−, D̄−}. (4.16)

Their explicit expressions can be computed using the equations above and the result is

DΣ
Θ = δΣ

Θ ∂ +
1

2it
(1 − e−λ)JΣ

Θ − 1

4it
(1 − 2e−λ + e−2λ) jΣ

Θ,

DΣ
Θ = δΣ

Θ ∂ +
1

2it
(1 − eλ)JΣ

Θ − 1

4it
(1 − 2eλ + e2λ) jΣ

Θ, (4.17)

where (J , J ) and (j , j ) were defined in equations (3.10) and (4.4), respectively. Using

the vanishing supercurvatures {D+,D−} and {D̄+, D̄−}, we automatically have that

F (λ)
.
= [D ,D ] = 0 (4.18)

which is the equation satisfied by the usual bosonic Lax pair.

Expanding this expression in exponentials of the spectral parameter, we find linearly

independent combinations of J-flatness (4.5) and J-conservation, and analogous equations

expressing the non-flatness and non-convervation of j. These formulæ are equivalent to

those found by component analysis in reference [26] and the derivations in (4.17) correspond

precisely to the usual Lax pair in sigma models on Grassmannian manifolds. It is known

that solutions of

D U(σ , σ ;λ) = D U(σ , σ ;λ) = 0 (4.19)

lead to infinitely many conservation laws [32]. Of course every solution of (4.15) with

V = U is also a solution of (4.19). Whether the reverse is true we leave as an interesting

open question. Others aspects of integrable supersymmetric sigma models can be found

at [27, 28]

5 Quantum integrability

The computations in section 4.1 relevant to the definition of the non-local charge (4.6)

are a mixture of superspace and component calculations. To study the quantum analogue

of the conservation of the non-local charge, one can proceed with the component analysis

along the lines of reference [29]. However, the non-local term in the charge is most easily

proven to be unrenormalized by embedding it in superspace. We therefore prefer to keep

supersymmetry manifest. Furthermore, since the worldsheet fermions κ prefer lightcone

coordinates, we will perform all calculations in this section in the lightcone basis.

5.1 Embedding of the non-local charge in superspace

We begin by proposing an N = (2, 2) generalization of the Heaviside function. This will

be the formal substitution of the worldsheet supercoordinate in the ordinary Heaviside

function. To construct the appropriate worldsheet supercoordinate we start with the chiral
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representation superspace lightcone coordinates σ1 − σ2 + iκ̄+
2 κ+

1 and σ1 − σ2 + iκ̄−
2 κ−

1 .

These coordinates have the property that they are annihilated by D̄±1 and D±2 in the

chiral representation. Since we will be working with hermitian superfields, it is appropriate

to switch to the real representation9 obtained by acting with ei(κσaκ̄)∂a . This gives

σ̂12 = σ1 − σ2 + iκ̄+
2 κ+

1 + i(κ+
1 κ̄+

1 − κ+
2 κ̄+

2 ),

σ̂12 = σ1 − σ2 + iκ̄−
2 κ−

1 + i(κ−
1 κ̄−

1 − κ−
2 κ̄−

2 ). (5.1)

With this expression for the worldsheet coordinate, the proposal for the Heaviside function

is simply

Θ(σ12)
.
= θ(σ̂12). (5.2)

The näıve guess for the first term in the supercharge is the Lorentz covariant integral

I0 =

∫∫

dµ1dµ2 Θ(σ12) [J(σ1), J(σ2)] (5.3)

with the “measure” dµ = dσ[D+, D̄+]|. To check this we must compute the component

projection. To do that it is useful to notice that the Heaviside function depends only on

even powers of κ. This, together with anti-symmetry of the commutator, results in only two

non-vanishing contributions: One in which both commutators hit the Heaviside function

and one in which neither of them do. Direct calculation results in

I0 =

∫∫

dσ1dσ2

{

θ(σ12) [J (σ1), J (σ2)] + 4δ′(σ12) [J(σ1), J(σ2)]
}

. (5.4)

Integrating the δ′ term over σ1,2 we get

− 4

∫∫

dσ1dσ2 δ(σ1 − σ2 ) [∂ J(σ1), J(σ2)] = 4

∫

dσJ
↔
∂ J. (5.5)

Although this type of term does not look familiar, we show in appendix C that

J
↔
∂a J =

it

2
(ja − Ja), (5.6)

where a can be any of the indices , , τ, σ. The superspace integral is therefore express-

ible as

I0 =

∫∫

dσ1 dσ2 θ(σ12) [J (σ1), J (σ2)] + 2it

∫

dσ (−J + j ) . (5.7)

It follows that the non-local charge in lightcone coordinates is expressible entirely in terms

of a the u(2, 2|4) supercurrent as

Qlc =

∫∫

dµ1dµ2 Θ(σ12) [J(σ1), J(σ2)] + 4it

∫

dµ J. (5.8)

The precise relative coefficient in the component expression (5.4) is crucial

to match the coefficient of j in (4.6). This is important since, contrary to

J = [D+, D̄+]J , it is impossible to write j as an expression of the form
(

(combination of D+ and D̄+) acting on (function of J)
)

. It would have followed from

this that there is no superspace expression, the lowest component of which is the non-

local charge.

9We thank Martin Roček and Warren Siegel for reminding us of this expression.
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5.2 Non-renormalization

We now examine the possible renormalization of the the non-local u(2, 2|4) charge. The

superspace form (5.8) shows that if the charge is renormalized, it will happen due to the

operator product of the u(2, 2|4) currents J(σ1) and J(σ2). We will now show that the

supergroup nature of this operator product cancels this potential divergence.

Consider, again, the u(2, 2|4) current JΥ
Σ. Irrespective of how it is defined, its op-

erator product expansion with any operator OΘ in the fundamental representation is on

general grounds

JΥ
Σ(σ̂1)O

Θ(σ̂2) ∼ − log |σ̂12|2 TΥΘ
ΣΓ O

Γ(σ̂1+2) (5.9)

for some u(2, 2|4)-invariant tensor T . Where we assumed that OΘ is a chiral operator.

This OPE is constrained by the fact that OΘ must transform under a global U(2, 2|4)
transformation as

[MΣ
ΥQΥ

Σ ,OΘ] = MΘ
ΥO

Υ, (5.10)

where QΥ
Σ is given by (3.9). This form is also fixed by the classical weight of J , which does

not change in the quantum theory since J is a conserved current. The tensor structure

is determined by the action of u(2, 2|4). In appendix B we review the construction of the

u(2, 2|4) algebra. There we find that TΥΘ
ΣΓ = (−1)|Θ|δΘ

ΣδΥ
Γ is the sign factor (B.4).

The JJ operator product now follows from the adjoint action and also by acting J

twice in (5.9)

JΥ
Σ(σ̂1)J

Θ
Φ(σ̂2) ∼ (5.11)

−( log |σ̂12|2 + log |σ̂21|2 )
[

(−1)|Φ|(|Σ|+|Θ|)+|Σ||Θ|δΥ
ΦJΘ

Σ(σ̂1+2)

−(−1)|Σ||Θ|δΘ
ΣJΥ

Φ(σ̂1+2)
]

where we have included log |σ̂21|2 so that this OPE is hermitian. Note that σ̂12 is not

antisymmetric in 1 and 2.10 What enters the quantum charge, however, is the matrix

product. This corresponds to summing over Θ = Σ. This gives (c.f. equation (B.6))

JΥ
Σ(σ̂1)J

Σ
Φ(σ̂2) ∼ −4t(log |σ̂12|2 + log |σ̂21|2)δΥ

Φ, (5.12)

where we have used equation (3.8) for the super-trace of J . Finally, what enters the

quantum non-local charge is the commutator

JΥ
Σ(σ̂1)J

Σ
Φ(σ̂2) − JΥ

Σ(σ̂2)J
Σ

Φ(σ̂1) ∼ 0 (5.13)

which is, therefore, not renormalized. All other potential quantum corrections to the

equation above are of order |σ|2 since the gauge coupling constant and other gauge invariant

operators have negative length dimension.

One can calculate from this OPE the corresponding OPEs of the vector components of

J , and they all vanish. This result has two consequences. First, it means that the classical

10Terms like σ

σ
are also forbidden in these OPEs since J is a worldsheet scalar.
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non-local charge (4.6) is well defined in the quantum theory. Also, as a quantum operator,

it is conserved since all equations needed to prove this do not receive quantum corrections.

We have explicitly worked out the details of the operator products for the u(2, 2|4)
current of the U(2, 2|4)/U(2, 2) × U(4) and shown that the non-local charge constructed

from this current is not renormalized. This result holds in more generality. Let us replace

U(2, 2|4) with a general supergroup G with Lie super-algebra g. Let H ⊂ G be a subgroup

and K ⊂ G its commutant. The gauged linear sigma model on the Grassmannian manifold

G/(K × H) can be constructed along the lines section 2, the H-invariant current as in

section 3, the non-local G-charge by the results of section 4, and finally, its embedding

in superspace performed in this section. What is then required is to repeat the steps

considered here to show that the generator of this non-local symmetry is not renormalized

if the last term on the right-hand-side of (5.11) vanishes. The operator product expansions

entering this calculation are, again, fixed by conformal weights and the representation

theory of g. Since we use only the fundamental and adjoint representations, equations

analogous to (5.10) and (5.11) hold. In the final step we take the matrix product of the

currents. The coefficient of the resulting operator product is simply the generalization of

the dual Coxeter number to the Lie super-algebra g. We, therefore, conclude that any

N = (2, 2) non-linear sigma model with Grassmannian target manifold constructed from a

supergroup G with vanishing dual Coxeter number has a non-local G-symmetry which is

protected from renormalization.

In the case of no supersymmetry on the worldsheet, the Grassmannian sigma model has

an anomaly (i.e. a gauge field strength appearing on the right-hand-side of (5.11)) which

prevents the non-local charge from being conserved [26, 33]. This anomaly disappears on

the N = (1, 1) supersymmetric worldsheet which can also be seen from the fact that the

dimension of the supersymmetric field strength prevents it from appearing in the OPE of

the supercurrents.

The renormalization of the non-local charge in the case of non-vanishing dual Coxeter

number is intimately related the the existence of a mass gap in the theory. Since the

Berkovits-Vafa GSLM does not have a mass gap [30] it is natural to find that the non-local

charge is not renormalized.

6 Conclusions and further directions

In this paper we analyzed the classical and quantum integrability properties of the gauged

linear sigma model proposed for the pure spinor superstring in AdS5 × S5 background by

Berkovits and Vafa [9]. A superspace non-local charge was constructed and was proven

to be conserved at both the classical and quantum level. Furthermore, we constructed

a superspace Lax “quartet”, which could be used to study the integrability of the model

directly in superspace. However, the use of such nontrivial conservation laws in the present

model still remains to be uncovered.

There are many interesting directions which deserve further study. One outstanding

problem is to understand the precise mapping between physical deformations of the original

pure spinor action and physical deformations of the action (2.13). As we noted in the
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introduction and in section 2 the mapping will break worldsheet supersymmetry since

the cohomology is not defined as that of the usual A-models. It would be interesting to

see whether the non-local charge constructed here commutes with the pure spinor BRST

charge, as in [34].

Another important open problem is a careful analysis of the t → 0 limit. We can see

from the results above that the present approach fails in this limit, since the construction

does not work in this case (many expressions are singular for t = 0). Moreover, in this

limit, one cannot eliminate the gauge degrees of freedom. It is reasonable to expect that

a suitable combination of limits of both coupling constants leads to the existence of some

other nontrivial conservation laws.

In [35] the spectra of some coset sigma models with target space supersymmetry were

computed. These sigma models can be thought of as supersymmetric generalizations of

the ~n field model with a suitable topological term turned on, which in the present case,

means a non-zero θ-angle in the superpotential (2.12). One might wonder whether similar

methods could be generalized for symmetric space cosets.
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A The U(2, 2|4) supergroup

The supergroup U(2, 2|4) can be thought as the group of unitary transformation of an

eight-dimensional vector space where the first four components are usual complex numbers

and the remaining four are complex Grassmann numbers. For example, let us denote XΣ

and element of this vector space. The index Σ splits into A = 1 · · · 4 and J = 1 · · · 4,
i.e. XΣ = (xA, θJ). Here, xA are complex numbers and θJ are complex Grassmann num-

bers. The metric in this space is ηΣ̄Υ = (ηĀB , ηĪJ), with ηĀJ = ηĪB = 0. Furthermore,

ηĀB = diag(1, 1,−1,−1) and ηĪJ = diag(1, 1, 1, 1). The elements of U(2, 2|4) preserve the

inner product

Ȳ Σ̄ηΣ̄ΥXΥ = ȲΣXΣ = (Ȳ ′)Σ(X ′)Σ, (A.1)

where (X ′)Σ = MΣ
ΩXΩ, (Ȳ ′)Σ = ȲΩ(M †)ΩΣ and MΣ

Ω is an element of U(2, 2|4). Note

that the supermatrix M has the following form

MΣ
Ω =

(

mA
B fA

J

gI
B nI

J

)

, (A.2)
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where m and n are usual complex matrices and f and g are Grassmann valued matrices.

The conditions from invariance of the inner product impose on these matrices are

(M †)ΩΣMΣ
Υ =







(m†)ABmB
C + (g†)AJgJ

C (m†)ABfB
K + (g†)AJnJ

K

(f †)IBmB
C + (n†)IJgJ

C (f †)IBfB
K + (n†)IJnJ

K







=







ηA
C 0

0 ηI
K






. (A.3)

These conditions can be solved factorizing M into two matrices

MΣ
Ω = TΣ

ΥUΥ
Ω, (A.4)

where the matrices U and T are given by

UΣ
Ω =

(

uA
B 0

0 vI
J

)

, (A.5)

TΣ
Ω =















(

1√
1+ZZ†

)A

B ZA
J

(

1√
1+Z†Z

)J

K

(

1√
1+Z†Z

)I

J(Z†)J B

(

1√
1+Z†Z

)I

K















, (A.6)

where u and v are two arbitrary U(2, 2) and U(4) matrices respectively and Z is an arbitrary

complex Grassmann valued matrix.

B The u(2, 2|4) algebra

Here we describe the superalgebra u(2, 2|4) ∼= gl(4|4). We use mostly the definitions and

conventions of [36, 37]. In order to describe this algebra, we introduce the set of oscillators

AΣ = (aα,b†
α̇, cJ), where we have split the A index into (α, α̇). Also, we define the

hermitian conjugate to be A†
Σ = (a†

α,−bβ̇, c†J ). The oscillators (a,b) are bosonic and the

oscillators c are fermionic. They satisfy the following (anti-)commutation relations:

[aα,a†
β] = δα

β , [bα̇,b†

β̇
] = δα̇

β̇
, {cJ , c†K} = δJ

K , (B.1)

so we can define the graded commutators of A and A† as

[AΣ,A†
Υ]

.
= AΣA†

Υ − (−1)|Σ||Υ|A†
ΥAΣ = δΣ

Υ, (B.2)

where |Σ| = 0, 1 is the grading of the corresponding mode of the oscillator. Using the above

definitions, the generators of u(2, 2|4) are written as

JΣ
Υ

.
= (−1)|Σ||Υ|A†

ΥAΣ. (B.3)
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Note that the supervector A forms a fundamental representation of u(2, 2|4) in the

sense that

[JΣ
Υ,AΘ] = −(−1)|Θ|δΘ

ΥAΣ. (B.4)

The (anti-)commutation relations of the generators can be easily computed using (B.2)

[JΣ
Υ,JΘ

Λ] = (−1)|Λ|(|Θ|+|Υ|)+|Θ||Υ|δΣ
ΛJΘ

Υ − (−1)|Υ|δΘ
ΥJΣ

Λ. (B.5)

It is interesting to compute the above commutator with the indices Υ and Θ contracted

[JΣ
Θ,JΘ

Λ] = (−1)|Θ|δΣ
ΛJΘ

Θ − JΣ
Λ((−1)|Θ|δΘ

Θ) = −2δΣ
ΛC, (B.6)

where C = −1
2(−1)|Θ|JΘ

Θ = −1
2A

†
ΘAΘ is the central charge operator. The other possible

trace of the generators is JΘ
Θ = (−1)|Θ|A†

ΘAΘ = 2C + 4B where

B =
1

4
JΘ

Θ +
1

4
(−1)|Θ|JΘ

Θ (B.7)

is the hypercharge [37]. These two traced generators can be removed from the u(2, 2|4)
algebra, and the end result is the psu(2, 2|4) algebra.

C Derivation of the “Flatness equation” and “J-relation”

In this section we derive the flatness equation (4.5) used to construct the non-local con-

served charge Q (4.6) and the relation (5.6) between J , Ja, and ja. As this will involve

some superspace gymnastics, we introduce the following notational aid for the commutator

of two superspace derivatives: △αα̇
.
= [Dα, D̄α̇]. The dotted index refers to a label on a

conjugated superspace derivative.

Hitting the second and third fundamental identities (4.3) with D and D̄ we find

the relations

− i∂αα̇JΥ
ΣJΣ

Υ +
1

2
△αα̇JΥ

ΣJΣ
Λ − (−1)|Υ|+|Σ|D̄α̇JΥ

ΣDαJΣ
Λ = 0,

−iJΥ
Σ∂αα̇JΣ

Υ − 1

2
JΥ

Σ△αα̇JΣ
Λ + (−1)|Υ|+|Σ|D̄α̇JΥ

ΣDαJΣ
Λ = 0, (C.1)

where we have temporarily resorted to four-dimensional spinor notation to avoid a pro-

liferation of formulæ. Summing these equations and using the first fundamental iden-

tity (4.1) yields

it∂aJ − 1

2
J

↔
△a J = 0 (C.2)

where a = , or a = τ, σ. Taking the difference, we find

iJΥ
Σ

↔
∂ αα̇ JΣ

Λ − t

2
△αα̇JΥ

Λ − 2(−1)|Υ|+|Σ|D̄α̇JΥ
ΣDαJΣ

Λ. (C.3)

Next, we rearrange the second and third fundamental identity to give

− tD̄α̇JΥ
Λ − (−1)|Υ|+|Σ|JΥ

ΣD̄α̇JΣ
Λ = 0 and −tDαJΥ

Λ − JΥ
ΣDαJΣ

Λ = 0. (C.4)
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Hitting the first with D and the second with D̄ we get some unilluminating equations. The

sum of these again gives (C.2) but the difference gives

iJΥ
Σ

↔
∂ αα̇ JΣ

Λ − t

2
△αα̇JΥ

Λ − 2(−1)|Υ|+|Σ|DαJΥ
ΣD̄α̇JΣ

Λ. (C.5)

Adding this to the intermediate result (C.3) and taking the definition of the bi-linear

current (4.4) into account, we obtain the formula (5.6) relating J , Ja, and ja.

We now turn to the flatness equation (4.5). In this computation we take the for-

mula (C.2) and hit it with △
ββ̇

. We are interested in the case in which a = and b =

or vice versa. The corresponding Ds anti-commute and terms with 3 Ds can be rewritten

using the linearity of J. Taking all of this into account the formula simplifies to

△b(it∂aJ
Υ

Λ) =
1

2

(

△bJ
Υ

Σ△aJ
Σ

Λ −△aJ
Υ

Σ△bJ
Σ

Λ

)

− it∂aj
Υ
b Λ

+
1

2

(

JΥ
Σ△b△aJ

Σ
Λ −△b△aJ

Υ
ΣJΣ

Λ

)

. (C.6)

Switching a and b and subtracting cancels the second line and gives the desired rela-

tion (4.5).
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